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Summary. A novel formulation of MP2 theory is presented which starts from the 
Laplace transform MP2 ansatz, and subsequently moves from a molecular orbital 
(MO) representation to an atomic orbital (AO) representation. Consequently, the 
new formulation is denoted AO-MP2.  As in traditional MP2 approaches electron 
repulsion integrals still need to be transformed. Strict bounds on the individual 
MP2 energy contribution of each intermediate four-index quantity allow to screen 
off numerically insignificant integrals with a single threshold parameter. Implicit in 
our formulation is a bound to two-particle density matrix elements. For  small 
molecules the computat ional  cost for AO-MP2 calculations is about  a factor of 100 
higher than for traditional MO-based approaches, but due to screening the com- 
putational effort in larger systems will only grow with the fourth power of the size 
of the system (or less) as is demonstrated both in theory and in application. MP2 
calculations on (non-metallic) crystalline systems seem to be a feasible extension of 
the Laplace transform approach. In large molecules the AO-MP2 ansatz allows 
massively parallel MP2 calculations without input/output of four-index quantities 
provided that each processor has in-core memory for a limited number of two- 
index quantities. Energy gradient formulas for the AO-MP2 approach are derived. 

Key words: Correlation - MP2 - AO - Laplace transform - Bounds - Parallel 
computer  - Gradient  - Crystal - Solid 

1 Introduction 

Moller-Plesset second-order perturbation theory (MP2) [1] provides the most  
economical way of including dynamical electron correlation in ab initio electronic 
structure calculations of molecules. It  has been applied to a large variety of 
problems, and has proven to successfully correct minor deficiencies of the 
Har t ree -Fock  self-consistent field (SCF) method [2]. A recent success of MP2 
theory is the improvement  in calculated magnetic shieldings of 170 nuclei by 
almost an order of magnitude in accuracy as compared to SCF results [3]. 

* Dedicated to Prof. W. Kutzelnigg whose books on theoretical chemistry aroused my interest in this field 
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Standard MP2 theory, however, if applied to large molecular systems, is 
computationally considerably more demanding than SCF techniques. The current 
computational limit for the applicability of MP2 theory is at about 100 valence 
electrons; meaningful applications beyond are possible only if aided by high 
molecular point group symmetry [4]. 

For large molecules the dominant computational step in MP2 calculations is 
the transformation of electron repulsion integrals (ERIs) from a given basis set, 
usually contracted cartesian Gauss type functions (CGTF), to a basis of occupied 
and virtual canonical molecular orbitals (MO) as obtained by the SCF procedure. 
The computation time for this transformation scales as n N  4 where n is the number 
of occupied MOs, and N is the number of CGTFs (we assume little difference 
between the number of CGTFs and the number of virtual MOs). The computa- 
tional effort can be reduced if near-zero integrals are neglected in the course of the 
first three quarter transformation steps [5]. Similar integral screening procedures 
fail when applied to the last quarter transformation step (with an operation count 
proportional to n l N  3) since canonical SCF MOs have non-zero amplitudes 
practically everywhere in a molecule. Therefore the asymptotic operation count for 
traditional MP2 algorithms scales with the fifth power of the size of the system. 

This situation is in marked contrast to SCF algorithms which completely avoid 
a transformation of ERIs from the CGTF basis to an MO basis: In the asymptotic 
limit pre-screening of ERIs (i.e. use of integral bounds to identify near-zero 
integrals not to be evaluated) reduces the .operation count for the construction of 
the Fock matrix from N ~ towards N 2 (though with a considerably larger pre- 
factor) 15-7]. The computational disparity between MP2 and SCF calculations 
is thus bound to grow. This is the more true since MP2 calculations on large 
molecules also involve input/output operations of partially transformed integrals 
(n2N 2 or at best ,,~ nN 2 if CGTF ERIs are calculated repeatedly [8]) to some mass 
storage device while direct SCF techniques [7] can proceed in-core with no more 
than ~ N 2 storage requirements. 

To reduce the computational labour involved in the calculation of correlated 
wave functions many workers have suggested localized occupied MOs together 
with local correlation spaces [9-11]. The latter were represented, for example, by 
a truncated expansion of approximate pair natural orbitals (PNO). This approach 
has been helpful in variational and infinite order calculations of the correlation 
energy, but is too costly for MP2 calculations. 

Unoptimized local correlation spaces constructed from a subset of CGTFs are 
more economical [12, 13], and have been successfully applied to MP2 theory [14]. 
The problem here is the deliberate truncation of the local correlation spaces on the 
grounds of empirical rules. Typical errors are of the order of one per cent in the 
correlation energy [13], and depend on the choice of the localization procedure. 
This can certainly be improved by enlarging the local correlation spaces, but 
a systematic and efficient approach has not been devised. 

Much the same can be said about the Local Ansatz [15], to which similar or 
somewhat larger error bars apply. The Local Ansatz does not use localized 
molecular orbitals, but relies on a particular choice of two-electron excitation 
operators which are defined in terms of empirically constructed local regions [16]. 

This situation can be summarized as follows: there exist methods for the 
approximate calculation of (MP2) correlation energies (a more complete account 
can be found in [13]) which guarantee computational savings over standard MP2 
theory, but they rely on empirical rules; their errors - typically of the order of 
1 %  - are difficult to assess, and efficient strategies for their systematic reduction are 
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unknown. Similar to semi-empirical approaches, these methods are useful in their 
own right, and some of them may become part of the main stream of computa- 
tional quantum chemistry. 

However, we desire a rigorous formulation of MP2 theory which in applica- 
tions to large molecules is computationally feasible on workstation clusters or 
massively parallel computers with an asymptotic operation count ,,~ N 4 or lower, 
and storage requirements no higher than ,-, N 2. It should allow geometry opti- 
mizations, that is, energies should be accurate to within 10-s Hartree, and analyt- 
ical gradients have to be available. Finally the ansatz should have some natural 
extension towards solid state applications. 

In this paper we present a formulation of MP2 theory in the CGTF basis set 
(actually there is no restriction to any particular choice of basis set). Our new 
approach is meant to solve all of the above-mentioned problems. Some preliminary 
applications will be discussed. 

2 Theory 

The starting point of our considerations is the expression for the MP2 energy of 
a closed shell system in terms of canonical SCF orbitals: 

E = - ~ (ia Ijb) [2 (ia [ j b )  - (ib Ija)] 
i jab g'a + ~'b - -  13i - -  ~'j 

(1) 

As usual, i,j designate doubly occupied MOs while a, b represent virtual MOs. el, 
ej . . . .  are corresponding orbital energies. 

The electron repulsion integrals (ERI) in the MO basis: 

(ia [jb) = (i(1)j(2)] r ~-z a I a(1)b (2)) (2) 

are obtained by an integral transformation from ERIs evaluated for quadruples of 
CGTFs v/~x2: 

(ialjb) = ~ (v~lz~)C~,C~aC~jC~b. (3) 
vgZ~. 

All algorithms (whether direct, semi-direct or completely disc-oriented) which are 
based on Eqs. (1-3) will be termed conventional in this paper. 

2.1 The Laplace transform M P 2  ansatz 

Asymptotically the most expensive step in conventional algorithms is the trans- 
formation, Eq. (3), with a fifth-power dependence on the size of the system. It is the 
orbital energy denominator in Eq. (1) which necessitates ERIs formed over canon- 
ical SCF MOs. Recently Alml6f [17] suggested a novel way to remove this 
disturbing denominator by a Laplace transform ansatz: 

E = - f / d t  e(t) (4) 
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where 

e(t)  = ~ ( i ( t )a ( t ) l j ( t )b ( t ) ) [2 ( i ( t )a ( t ) l j ( t )b ( t ) )  -- ( i ( t )b ( t ) l j ( t )a ( t ) ) ]  
ijab 

(5) 

and 

[i(t)) = l i)  exp((ei - eF)t/2), la(t))  = [a) exp(-- (e, -- eF)t/2) (6) 

are scaled canonical orbitals, ep is a free parameter which for reasons of numerical 
stability is best chosen between the energies of the highest occupied orbital 
(HOMO) and the lowest unoccupied orbital (LUMO), e.g. ev = (erioMo + eLUMO)/2. 

AS Alml6f [17] pointed out, Eq. (5) still holds if the t-dependent orbitals, Eq. (6), 
are localized by some orthogonal transformation, but this approach will not be 
investigated in this work. 

The first obstacle to any application of the Laplace transform MP2 ansatz is the 
t-integration, Eq. (4). This problem has been solved in [18]. A functional approx- 
imation scheme has been introduced which allows to substitute the t-integration by 
a finite summation: 

l f o d t e - X t  ~w~e -~t'. (7) 
X a = l  

This is a useful approximation if the orbital energy differences x = e~ + 
eb -- ei -- e~ > 0 are confined to some finite interval [Xmin, Xma,], and if the para- 
meters w, and t, are determined by a least-squares condition [18]: 

xm"Xdx f(x) 1/x-  w, exp(- xt,) = m i n i  
r n i n  ~t = 1 

(8) 

Here f(x) is the distribution density of x = ,s a --[- e b - -  e i - -  ~,j (which can be cal- 
culated from the distribution of ea - ei). 

The relative error in the MP2 energy, if calculated with the functional approx- 
imation, Eqs. (7, 8), can be made as small as desired. In typical applications 

= 5 . . .  8 exponentials in Eq. (8) suffice for #Hartree accuracy [18]. The number 
z of exponentials necessary to meet some pre-set accuracy in the MP2 energy E can 
be determined a priori from the following estimates of the relative discretization 
error [18]: 

(9) 

and 

12 N1/z 1/2 
L 2 = ( f d x f ( x )  l - ~ w ,  exp(-xt~) ) ( f dx f ( x ) )  / ( fdx f ( x ) / x ) .  

(lO) 

The corresponding formulas in [18] contain some misprints. The number of 
exponentials z determined this way depends primarily on the width of the interval 
[Xmin, Xmax], but does not depend on the size of the molecular system. 
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With the Laplace integration replaced by the finite summation, Eq. (7), the 
expressions for the MP2 energy, Eqs. (4, 5, 6), now read [18]: 

E ~ - ~, sgn(w~)e~ (11) 

e, = ~. (i ,a, lj~b,) [2(i~a, lj, b,) - (i,b, lLa,)]  (12) 
ijab 

[i~) = [i) Iw~l ~/8 exp((ei -- eF)t~/2), 

la , )  = la)  Iw~l 1/8 exp(-- (e, -- eF)t,/2). (13) 

The expansion coefficients w, have always been found to be positive, that is, 
sgn(w,) = + 1 in Eq. (11). 

So far we have recapitulated some of the Laplace transform MP2 theory 
outlined in 1-17, 18]. It has been claimed 1-18] that the new formalism allows to 
calculate the MP2 two-particle density in the CGTF basis without prior calcu- 
lation of electron repulsion integrals in the MO basis. This will become fairly 
obvious after we re-formulate the Laplace MP2 ansatz in the CGTF basis. We term 
our new formulation AO-MP2 with the familiar acronym AO for atomic orbital 
(while the subsequent considerations are for pure CGTFs, they also apply to more 
general atomic basis functions as will be discussed in Sect. 6). 

2.2 The A O - M P 2  ansatz 

To relate the conventional MO-based formulations of MP2 theory to the new 
approach we need the expansion of the MOs in terms of CGTFs: 

li)  = ~ l v )  C~, la)  = ~ l v )  C~. 
v 

Let us define then two symmetric matrices D~) and _D ~) as: 

(14) 

bt~ = Iw~11/4 z C~ exp((ei- ~F)t~)C~ v/~ 
i 

P¢~ = Iw~l 1/4 ~ Cv~ exp(-  (e. - -  ~F)ta)Cua. (15) v#  
a 

D~ and _D ~ relate to occupied-occupied and virtual-virtual blocks of the exponen- 
tial of the Fock matrix, respectively. Note that some MOs may deliberately be 
excluded from the summation in Eq. (15), and thus from the correlation treatment 
('frozen orbitals') as is often done for core orbitals ('frozen core') in conventional 
MP2 theory. 

~,, 1/4 = 2, t~ = 0) is the closed-shell SCF one-particle density matrix in the 
CGTF basis (unless occupied orbitals have been frozen). 

If we insert Eqs. (14, 15) into Eqs. (12, 13) we obtain: 

= (v # [Z 2 )D~,v -~u'ut~(~) b~z  _D~,~ [2(vplxA) - (vAl;t#)] . (16) 
v ' / t ' Z ' ~ , '  v /zZZ 
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Together with Eq. (11) this forms a simple expression for the MP2 energy with 
matrices and ERIs in the CGTF basis. The impractical eightfold summation over 
basis function indices can be removed if we define: 

Iq) = I'~(a)) = ~ -(=) (17) 1#) Dr,,, Iv) = Iv(a)) = ~ I#)  D(=) u--/tv, 
/t /t 

and (for simplicity we subsequently drop the superscript (a)): 

(~I]2_):~(~(~(~(v '# ' IZ 'Z)b, ,~)D_~, , )[)x ,z)D_z,z .  (18) 

Eq. (16) now reads: 

e, = ~ [ (9~1~_2) [2(v/~lX2) - (v21z#)]. (19) 
v#X~, 

To make our notation transparent we recall that the bars and underbars in 
or ~ represent linear mappings, Eq. (17), of the unbarred basis functions. A primed 
basis function on the other hand, e.g. v', is a basis function and nothing else. 
Accordingly, V is meant to be the mapped basis function v'. 

For each a = 1 . . .  ~ four N 5 transformation steps are necessary to establish 
(q_~l~_2_) according to Eq. (18) (it is possible to evaluate e, in Eq. (17) by only three 
N 5 transformation steps, but this we will not be used here). Computationally 
this is much worse than the four steps of a conventional integral transformation for 
MP2 energies, Eq. (3), which formally scale with nN 4 and nZN3: In typical 
applications the conventional MP2 algorithm will be 100 times more efficient than 
the AO-MP2 ansatz. In the following Sect. 2.3 we discuss how the operation count 
for the AO-MP2 ansatz can be significantly reduced in applications to large 
molecules. 

2.3 Integral screening in the AO-MP2 ansatz 

The AO-MP2 ansatz can become competitive if an efficient strategy is devised to 
reduce the computational labour involved in the evaluation of e,, Eqs. (18, 19), by 
a factor of 100 or more. For large molecules this may be achieved by screening 
integrals with near-zero contributions to the MP2 energy in each quarter trans- 
formation step, Eq. (18), and in the final assembly of e,, Eq. (19). Here we outline 
our screening procedure while the meaning of 'large' and 'near-zero' will be 
addressed in Sects. 4 and 5. 

For all of the intermediate quantities in Eq. (18), that is, for (v'#' [Z'2'), (~#' [Z'2'), 
(v_~l X'Z), (~7~1 ~)~'), and (~Tp I ~)~), the absolute values of their individual contributions 
to the MP2 energy are given by: 

I(v'#[x'~,') [2(9'~'1~'2') - (¢~_'1~'~')31 ~< I(v'#lz'2')l [2z,,~, z~,~, + z,,~, z~,~,] 

<~ Q.'," Qz'z" [2z.. , .  zz.z. + z..z. zz.,.]. (20) 

[(~#lz'),') [2(v~'1~'2_') - (v_~'L~'£')]l <~ 1(9#1Z'2')1 [2Yu,, Zx,z, + Y~,, Zx,,,] 

~< X,,.  Qx'z' E2Y,.. zz.~. + Yz.. zz...]. (21) 
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and 

I (~ lz '2)  E2(v#12'2_') - (v~'l~'~)] I ~ 1(9~1z'2)1 [2Q,~ zz,z, -4- Y~,~ xx,,~] 

~< Z~. Qrz, [2Q~. zr~. + Y~,~ xz. . ] ,  (22) 

1(~_~1~;~') [2(v~lz_2_') - (v2'lz~)]l ~ I(9~l;?,t')lE2O~,, Yx'z + Yx'~ Qzu] 
~< Z~, Xz~. [2Q~. Y~'x + Y~'~ Qzu], (23) 

<~ Z~, Zx~ [2Q~ u Qxz + Q~z Qx,], (24) 

respectively. The right-hand sides are strict upper bounds to the magnitudes of 
these correlation energy contributions. The quantities in the bounds are: 

Q,u = (v#l v#) 1/2 (25) 

x,u = (9~tlg~t) 1/2 (26) 

Y~. = (v_.~lyy) u2 (27) 

Z,~, = (~#1~#) 1/2. (28) 

Later we will change our definition of Z for computational convenience (Eq. (33)). 
The proofs of inequalities (20-24) follow directly from Schwarz' inequality for 

interacting charge distributions [19]: 

I(v~lz2) l ~< (v~lv~) 1/2(z,~lz;t) 1/2 (29) 

which holds for any type of orbitals provided the r.h.s, exists. The efficiency of 
Schwarz' inequality, Eq. (29), in electronic structure calculations has first been 
demonstrated in [201. 

For the inequalities (20-24) to be useful in a screening procedure, the matrices 
Q, X, Y, and Z, Eqs. (25-28), have to be calculated and stored beforehand. 
This is certainly not a problem for the symmetric matrix Q, which is also used 
in direct SCF programs [20], and can be obtained by N 2 integral evaluations, 
Eq. (25). X and Y, Eqs. (26,27), require N 3 integral evaluations and a 
subsequent transformation step (with N 4 floating point operations) which can be 
carried out in a fully direct mode, that is, without storing intermediate matrix 
quantities: 

ZX 

y 2  = ~ (Z/~I2/2)Dx ~ D~. (30) 
X2 

Integral screening can be used at this stage, but it has to be kept in mind that 
matrix elements of Q, X, and Y, which are always positive, may not be assigned 
values smaller than the magnitudes of their possible errors - otherwise their use in 
integral bounds will lead to gross errors. 

We now turn to the evaluation of matrix Z, Eq. (28). If we proceed as in the 
calculation of matrices X and Y, Eq. (30), we will end up with (formally) N 4 integral 
evaluations plus a subsequent N 5 (discless) transformation step: this approach is 
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almost as costly as the operations we want to avoid. Fortunately, however, we can 
construct upper bounds to Z~, = (v#1 ~#)1/2 which will meet our demands: 

and 

Xv,u, 
XX 

07#1~#) = ~ (Z#12/I) Dz~ Da~ <~ Y~,x ID~l 2 

(31) 

(32) 

These inequalities follow from the triangular inequality and from Schwarz inequal- 
ity, the latter being applied to (q)~ll72) and to (Z#I2#), respectively. The matrices 
x and y, which are defined by Eqs. (31, 32), a re - ih~  available by an N 3 matrix 
multiplication step, and may be used for a re-definition of Z~ :  

Z . ,  = min(x.,,  y~,). (33) 

This new definition of Z can be inserted into inequalities (20-24) since 
(~#] ~#)1/2 ~< min(x,~, y,~). The preliminary definition according to Eq. (28) will no 
longe~ be used. 

We sum up the contents of this section: For each individual partially trans- 
formed integral in Eq. (18) we have devised a bound to its contribution to the MP2 
energy. These bounds, Eqs. (20-24), rely on four N 2 matrices: Q, x ,  Y, and Z as 
defined by Eqs. (25, 30-33). These four matrices can be obtained by at most N 3 
integral evaluations and a direct N 4 integral transformation step. The bounds are 
derived from Schwarz' inequality, Eq. (29), and can thus be expected to be very 
efficient [20]. Their performance in the present context, however, will have to pass 
some practical tests (Sects. 3.2 and 5). 

3 Algorithms 

It is appropriate to clarify the application of our ansatz in algorithmic form. We 
will present two different algorithms. So far only the first algorithm, a two-step 
out-of-core transformation algorithm, has been implemented, and all numerical 
tests in Sect. 5 relate to this preliminary implementation. Later we discovered 
a superior algorithm, Sect. 3.3, which solves the memory bottleneck problem in 
MP2 calculations. 

3.1 Two-step out-of-core algorithm 

We outline our preliminary implementation of an AO-MP2 program, which uses 
semi-direct two-step out-of-core transformations [21]. 

1. Get basic data (molecular geometry, atomic basis sets, SCF MOs, required 
accuracy). 

2. Determine the distribution function f ( x )  of orbital energy differences 
ea + eb - ei - ej I-18]. 

3. From the required accuracy and from f ( x )  calculate the parameters z, w~, 
G(c¢ = 1 . . z) of the exponential approximation to l /x ,  Eqs. (7-10). 
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4. Choose a threshold parameter 0 for screening of partially transformed integrals 
in accordance with the required accuracy. 

5. Calculate the integral bounds Q, Eq. (25). 
6. For each ~ = 1 . .  ~ evaluate a contribution e, to the MP2 energy E, Eqs. 

(11, 16). 
7. Output the MP2 energy E. 

The evaluation of each e, in step 6 proceeds as follows: 

6.1 Determine the matr ices/)  and D according to Eq. (15). 
6.2 Evaluate the integral bounds X and Y, Eq. (30), and the integral bound Z, 

Eqs. (31-33). 
6.3. Calculate and transform CGTF ERIs (v'#'[g'2'). Half-transformed integrals 

(~_1~'2') are written to direct access file. 
6.4 Read half-transformed integrals in reverse order as (X'2'[9#) and transform 

them to (£21 ~7/~). The fully transformed integrals (£_21 ~7#) can Then be processed 
directly with ~ G T F  integrals (Z2lv/~) and (z#lv2), v~hich are evaluated 'on- 
the-fly', to yield an energy contribution to e,, Eq. (19). 

Integral screening is used in all critical stages of the calculation: 

In step 6.3 integrals (v'#'lx'2') will be evaluated only if: 

Q~'u' Qx'~'[2Z~'~," zz'~' + Z~,~, Z~,~,] > & (34) 

After evaluation they will be transformed to (9/~'1)(2'), provided they meet the 
condition: 

I(v'I~'IZ'A')IE2Z,,,,, Zx,,V + Z~,~, Z r ¢ ]  > & (35) 

Quarter-transformed integrals (~/~'IZ'2') will be transformed to half-transformed 
integrals (v/~IZ'Z') only if: 

[07#'[Z'2')l[2Yu,v Zz,~, + Y~,, Z~,~,] > & (36) 

Half-transformed integrals (values and indices) are written to direct access file if: 

I(~EIz'2')IEZQ~ . Zz,z, + Y~,~ Xz,u] > 0. (37) 

The re-ordered half-transformed integrals (Z'2'l ~/~), which are read from file in step 
6.4, may then be transformed to (~2'19#) withofi't further screening. 

The last quarter transformation is c~ried out for integrals (~2'1 ~/~) which fulfill: 

I(22'[gE)I[2Q~u Ya'x + Y~'~ Qxu] > 0. (38) 

Finally, for each fully transformed integral (~2_1 g_~) the ERIs (~21 v#) and (x#lv2) 
need to be evaluated only if: 

1(~2_1~)1[2Q~ Qx~ + Q~ Qx~] > & (39) 

All integral evaluations are of course carried out in batches [22], and correspond- 
ing quantities are arranged in appropriate order. Canonical symmetries of the type 
(v/t I Z2) = (pvl;~2) = (v/~12Z) = (#vl2Z) have been utilized in all integral evaluations, 
that is, N4/4 ERIs and 3N4/4 ERIs would be calculated in steps 6.3 and 6.4, 
respectively, if no integral screening were used. The screening criteria, Eqs. (34-39), 
have been adapted accordingly. Half-transformed integrals (~TEI Z'2') are calculated 
and stored only for Z' ~> 2'. 
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In our implementation an exploitation of (~122_) = (22_1~7~) as a means to cut 
computation cost in step 6.4 (by running the loop over X With the restriction Z ~< v) 
was incompatible with integral screening by upper bounds of energy contributions, 
Eqs. (34-39). As a possible rationalization we point out that integral neglect in one 
quarter-transformation step is certainly not independent from integral neglect at 
other stages of an AO-MP2 calculation. Usually such mutual effects contribute 
only in second order to the total error and become insignificant as o a becomes 
reasonably small (~< 10-7). 

In this section we refrain from a discussion of parallelization or memory 
requirements as it would concern only our preliminary implementation (see 
Sect. 3.3 instead). It is worth mentioning that we obtain an a priori estimate of the 
number of non-negligible half-transformed integrals by counting all quadruples 
v#z'2' with: 

Z~, Qzw [2Qvu zz'z' + Yz'~ xz'u] > ~9. (40) 

If the required disc space for half-transformed integrals is predicted to be larger 
than the available space, we switch to a multiple pass algorithm in close analogy 
to [8]. 

3.2 A note on multiple pass algorithms 

Multiple pass algorithms have been devised in conventional MP2 schemes with 
(semi-)direct ERI transformations [8] in order to cut disc space (or in-core 
memory) demands for (partially) transformed integrals, e.g. from n2N 2 down to 
a minimum of nN 2 (we recall that n is the number of doubly occupied MOs). This is 
accomplished by partitioning the occupied space into m ~< n sub-spaces M, and 
performing a partial MP2 calculation m times, each time evaluating quarter- 
transformed integrals (i#Iz2) (and subsequent intermediates) only for i • M. During 
the complete MP2 calculation the CGTF integrals thus have to be re-calculated for 
each occupied sub-space M, that is, integral evaluation formally becomes an mN 4 
operation. Integral screening could reduce this asymptotically to ,-~ mN 2 with 
a large pre-factor, but with existing integral pre-screening algorithms for conven- 
tional MP2 methods, which do little better than to ignore CGTFs (v#]•2) if 
Qv, Qzx < ,9, this asymptotic limit has not yet been attained. 

As already mentioned in Sect. 3.1, we also admit multiple passes in the first 
quarter-transformation of our out-of-core AO-MP2 program. M then becomes 
a sub-set of CGTFs. Integral pre-screening is based on Eq. (34) rather than on 
Qv, Qz~ > & and consequently we can expect to reach the ,~ mN 2 limit for 
multiple ERI evaluation costs earlier than conventional direct multiple pass MP2 
schemes. This claim may be backed by a comparison of these two pre-screening 
conditions carried out for the porphyrin molecule C 2 o H 1 4 N  4 (split valence plus 
polarization (SVP) basis set = 430 CGTFs, ,9 = 10 -9 ,  pre-screening of whole 
integral batches [22]): For QvuQx~ > oa as pre-screening condition 29% of the 
integrals have to be evaluated while this number is reduced to 19% if Eq. (34) is 
used. For the distributions of magnitudes of matrix elements Q and Z cf. Table 3. 

Pre-screening formulas like Eq. (34) may also be incorporated into conven- 
tional multiple pass MP2 algorithms (with appropriate adjustments like a dis- 
cretized t-integration over Z~,u,(t)Zzw(t): this provides a bound to the relevant 
part of the two-particle density in the CGTF basis). 
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Finally let us point out that m passes through the CGTF evaluation in step 6.3 
do not automatically imply an increase of integral evaluation costs by a factor of m. 
Using the same derivation as in Eq. (20) it may be shown that Zv,u, (and similarly 
also Zvw) may be replaced in screening formula (34) by modified matrix elements: 

Z~,u,(M)= min(Z~,~,,,m ~ Yu,xlOx~,l ). (41) 
xeM 

This is a direct consequence of the fact that in pass M an integral (v'#'LZ'2') will no 
longer contribute to the total MP2 energy E, but only to some well-defined share 
E(M). Such a modified screening formula has not yet been implemented or tested. 

3.3 In-core multiple pass algorithm 

Other than conventional MP2 algorithms the previously outlined AO-MP2 algo- 
rithm requires an evaluation of CGTF integrals (v#l)~2) and (v21X#) for each fully 
transformed integral (~#122_) in the course of the second half-transformation, step 
6.4 in Sect. 3.1. This pari-is not much affected by possible multiple passes in the first 
half-transformation. 

Another type of AO-MP2 algorithm is obtained if we admit multiple pass type 
integral re-evaluation both at the beginning and at the end of the AO-MP2 
transformation procedure. Only steps 6.3 and 6.4 of our previous algorithm, 
Sect. 3.1, need to be replaced by the following in-core multiple pass scheme: 

6.A Partition the CGTF basis into m sub-spaces M of (maximum) dimension 
dim(M); for ERI evaluation in batches each sub-space M should contain only 
complete shells of CGTFs. 

6.B For each pair of sub-spaces M, M' calculate a contribution e~(M, M') to e~, 
and thus to the MP2 energy E. 

Step 6.B needs to be detailed: 

B.1 Calculate all quarter-transformed integrals (~#' [)(2') for v • M, 2' • M', and all 
#', Z' (integral screening, while applicable, will not be given attention in this 
section). The memory requirement for the quarter-transformed integrals is 
dim(M) 2 N 2. The number of CGTF integrals (v'/I)(2'), which are evaluated 
and transformed 'on-the-fly', is d im(M)N 3. The number of floating point 
operations for the transformation is dim(M) 2 N 3. 

B.2 Continue the in-core transformation to obtain all three-quarter transformed 
integrals (v#122') for v • M, 2' • M', and all #, )~. Again the memory require- 
ment is dim(M) 2 N 2 while the number of floating point operations is 
dim(M) 2 N a. 

B.3 Calculate and process immediately CGTF integrals (v/~l)~2) and (v2[X~) for 
v • M and all #, X, 2, i.e. evaluate: 

/~z,(M, M') = ~ ~ (~_~112') [2(v#lZ2) -- (v2lZ#)-]. (42) 
v ~ M  #,Z 

This step takes d im(M)N 3 integral evaluations, and dim(M) 2 N 3 floating 
point operations for the construction of matrix/~(M, M'). 



158 M. Hfiser 

B.4 Evaluate: 

e,(M, M') = ~ ~/~aa,(M, M')_Da,a. (43) 
~ ' E M '  ). 

Without integral screening taken into account, this multiple pass algorithm allows 
to calculate e, (and thus the MP2 energy) by NS/d im(M)  = m N  4 integral evalu- 
ations plus an N 5 operation count for the transformation steps. The largest 
matrices to be kept in memory have dimension dim(M) z N 2, and since dim(M) 
can be any small positive number, e.g. 10, the evaluation of e, can be performed 
in-core, that is, without mass storage devices. Furthermore, each contribution 
e,(M, M') to the MP2 energy can be evaluated independently, e.g. on different 
nodes of a massively parallel computer. 

4 Asymptotic operation count in very large systems 

Before we monitor the performance of integral screening in the AO-MP2 algorithm 
in applications to medium sized molecules (Sect. 5) we want to promote some 
understanding by means of model systems. 

The efficiency of integral screening is tied to the sparsity of matrices Q, X, Y, 
and Z, because the correlation energy contributions of individual partially trans- 
formed ERIs are bound by a product of four of these matrix elements, Eqs. (20-24). 
Of the four matrices Q, X, Y, and Z, asymptotic characteristics typical of very 
large molecules will first be exhibited by Q as it relates to the original (and 
well localized) basis set (Q~u = (v#lvlOx/2) • As matrix elements of Q appear at 
least once in all bounds, Eqs. (20-24), their size distribution is most important with 
respect to the efficiency of integral screening in medium sized molecules (,~ 20-50 
atoms). 

4.1 Sparsity in Q and implications 

Let us introduce a simple mathematical model for the sparsity in Q. We consider 
a homogeneous distribution of s-type Gaussians in d dimensions (d = 1, 2, or 3) 
with p as the number of Gaussians per unit volume. For simplicity there is only one 
orbital exponent ~. We then obtain for two Gaussians v, # separated by a distance 
r ~ r v # :  

Qvu -- (4~/701/4 exp ( -  ffr2/2). (44) 

It is convenient to define the maximum matrix element: 

Qmax = max avu = (4~/rc) 1/'. (45) 

The number density nr of basis function pairs v, # separated by a distance r is: 

nr dr = fa p2 r a- 1 dr, (46) 

where Ji = 2, J~ = 2n, and f3 = 4re. From Eqs. (44-46) the number density nq of 
matrix elements Qvu with: 

qvu = ln(Qm,x/Q~u) (47) 
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in the infinitesimal interval between q and q + dq (q > 0) can be inferred as: 

nq dq = (fa p2 /(a/2) (2q)ta-2)/2 dq. (48) 

In planar systems (d = 2) nq(q) is a step function, that is, the number of matrix 
elements Q~u with magnitudes between 10 -4 and 10-5 is the same as between 10-9 
and 10-lo (provided Qmax > 10-4). The latter result remains valid for any realistic 
distribution of orbital exponents (( in Eq. (48) then adopts the value of the 
harmonic mean of all occurring orbital exponents). 

From Eq. (48) one can derive an asymptotic formula for the number 1(,9) 
of basis function quadruples v,/~, Z, 2 which obey the simplified pre-screening 
criterion: 

Q~u Qxa > 0 (49) 

or equivalently: 

q~,,, + qxa < O = ln(QZmax/'9). (50) 

Using the distribution function nq, Eq. (48), we obtain after two integrations: 

4 
1(,9) = ~ (2nO/() n V z, (51) 

a !  

where V is the actual spatial extent of the system. Introducing the total number of 
basis functions N = pV we may rewrite Eq. (51): 

I(0) = p2 N 2 ~z In (4(/(~z02)) d!. (52) 

In a three-dimensional system and for realistic choices of parameters the asymp- 
totic number of ERIs obeying Eq. (49) becomes I(10-lo) ~ 105 N 2. The number of 
(untransformed) ERIs to be processed in the AO-MP2 algorithm will be below the 
estimate given in Eq. (52) as the more stringent screening criteria Eqs. (34-35) take 
into account bounds to the relevant two-particle density. 

The asymptotic number of partially transformed integrals, which are screened 
by Eqs. (36-38), remains to be discussed. In all these inequalities there is at least 
one charge distribution which originates from a pair of CGTFs, either in a partially 
transformed ERI, or in a Q matrix element. Thus we expect at worst ~ N 3 
partially transformed integrals in the asymptotic limit. This could be reduced to 
,-~ N 2 partially transformed integrals, if the transformed CGTFs 9 (and/or ~_) are 

well localized. 

4.2 Localization of the transformed basis functions ~, ~_ in 
non-metallic crystals 

The localization of transformed CGTFs ~ will be guaranteed if the absolute values 
of the matrix elements D~u , Eq. (15), decrease exponentially with the distance 
between basis functions v and #. This would indeed be true i f / )  were the density 
matrix of a non-metallic crystal 1-23]. Since £5 becomes proportional to the density 
matrix for t ~ 0 one may expect for extended (non-metallic) systems that the 
transformed basis functions ~ remain localized for t > 0. This will subsequently be 
demonstrated for a crystal with non-degenerate band structure 1-24]. 
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Our assumptions are: 

(1) The Hartree-Fock Bloch functions can be expanded in terms of a limited 
number (per unit cell) of atomic basis functions v.(r): 

oh(K, r) = ~ vn(r) C~., (K), (53) 
v , n  

where n is a direct lattice vector, K is a wave vector in the (first) Brilloin zone BZ, 
h is a completely occupied band, and the basis set expansion coefficients C~,h (K) 
are solutions of the SCF equations 1-25]: 

~, F,.~.. C~,~h (K) = ( ~, S,.~m C~,.h (K) )~h(K). 
I I , m  

(54) 

(2) The coefficients Cv.h(K) exhibit the translational (symmetry) property: 

C . . . .  h(K) = C, .h(K)e  iKm. (55) 

(3) The coefficients Cv.h(K) a r e  periodic and analytic functions of the wave 
vector K, that is, they can be represented by a locally convergent Taylor series 
in terms of the components of K at every point of the non-degenerate band 
h [26]. 

We then observe that the left hand side of Eq. (54) and the expression in 
brackets define two sets of analytic functions f~,h (K) and S~.h (K), provided the 
infinite summations converge uniformly in a complex (!) neighborhood of BZ. We 
briefly prove uniform convergence: C~,h(K), [hi ~ ~ ,  may only increase as 
(1 + 6)lnl, where 6 > 0 relates to the imaginary part of K, Eq. (55), and can be 
chosen as small as desired. Uniform convergence will then be guaranteed for 
a small enough imaginary part of K, provided S~,~,, and F~.~,~ decrease exponenti- 
ally with ] n - m[ ~ oo. The latter is certainly true for the overlap matrix and for the 
local part of the Fock matrix. In the absence of partially filled bands the non-local 
exchange part of the Fock matrix also decreases exponentially since the density 
matrix exhibits exponential decay in this case [23]. 

Analyticity off~.h (K) and S~,h (K) thus proven we note (the asterisk indicates 
complex conjugation): 

ah(K) = ~ C*oh (K*) S~oh (K) # 0 (56) 
v 

for all K in a neighborhood of BZ. The opposite would imply that either the basis 
set is linearly dependent, or q~h(K) = 0. We may therefore conclude that the orbital 
energies: 

(57) 

are analytic. 
This result does not hold for metallic systems as is well known [27]: the 

exchange contribution to F~.u,, does not decay exponentially for In - m l ~  oo. 
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As the functions Cv.h (K) and eh(K) are analytic (and periodic) this also applies 
to: 

8(~)h (K) = Iw~l "8 c~,h (K) exp((eh(K) -- eF)t~/2), (58) 
and to: 

d ~ , ,  (K) = ~ C~2h (K) C ~  (K*). (59) 
h 

The constants w~, t~, eF have been defined in Sect. 2.1. 
Integration over the first Brilloin zone yields the crystal analogue of g(~) 

Eq. (15): 

1 f 3 d!~) D(~) d K (K). (60) 
Vng/m - -  VB Z J vn/zm 

Using the translational properties of Bloch functions, Eq. (55), in conjunction with 
Eqs. (58, 59) we observe: 

F~ (~') d K ~-(~') (K) e -iKm. (61) 
~ V n , ~ n +  m ~ -  U V n l t  n 

B Z  d 

Obviously this integral defines b (~) to be a Fourier coefficient of function 
Vnl~n  + rn 

d~2.. ( K). 
By virtue of a theorem on Fourier coefficients of periodic and analytic functions 

[28] we finally conclude that there is a positive constant ~/with: 

lim b (') exp(r/I m l) = 0, (62) Vn//n + m 

that is, fi (') decreases exponentially as In - m l ~  oo, and the transformed basis vn~/m 
functions f, Eq. (17), are localized. 

For the second type of transformed basis functions v__, Eq. (17), similar asymp- 
totic characteristics may be inferred within the finite basis set (per unit cell) 
approximation. 

It has thus been demonstrated that there are only ,,, N z partially transformed 
integrals to be processed - at least in very large systems. Moreover, as matrix 
elements bvu and _Dvu decrease exponentially with distance between v and #, only 
a limited number of them need be considered in a transformation step: the ~ N 5 
transformation steps of conventional MP2 theory ultimately become ,-~ N :  trans- 
formation steps in the AO-MP2 approach as we consider very large molecular 
systems with localizable electronic structure. 

With respect to solid state MP2 calculations we note that MP2 energy contri- 
butions of distant charge distributions, e.g. (~#] ~2) (v#lL2) with basis function pair 
(vp) well separated from (X2), may be evaluated by multipole expansion and direct 
lattice sums (additional considerations are necessary to enforce convergence). 
Alternatively one may exploit the Fourier integral over C~)h (K), Eq. (58), which 
defines a localized (exponentially decaying) Wannier type function. The latter 
approach is more in the spirit of Alml6f's original formulation of Laplace trans- 
form MP2 theory 1-17]. The leading term in a multipole expansion involving 
products of localized Wannier-type orbitals will be ~ 1/R 6. Probably there is 
a relation to molecular van der Waals coefficients which allows further reductions 
in the operation count. 
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5 Applications: efficiency and over-all accuracy of the AO-MP2 ansatz 

Two parameters in the AO-MP2 ansatz determine the accuracy and the computa- 
tional cost of a calculation: the number z of exponentials used in the discretized 
Laplace integration, Eq. (7), and the screening threshold 0 in Eqs. (34-39). In this 
section we will monitor for representative applications: 

(1) the over-all accuracy of the MP2 correlation energy as a function of 
and ~9; 

(2) the number of (partially transformed) integrals admitted by the screening 
formulas, Eqs. (34-39); 

(3) the distribution of magnitudes of the matrix elements of Q, x ,  Y, and Z, Eqs. 
(25-27, 30-33), which are crucial for efficient screening. 

We will demonstrate that any pre-determined accuracy can be accomplished by 
proper choices of ~ and & and that in systems the size of porphyrin (C2oH14N4) the 
number of (partially transformed) integrals passing the bounds, Eqs. (34-39), grows 
at most with the third power of the size of the system when compared to similar, 
but smaller molecules (same screening threshold ~9). 

In a previous paper [18] we studied the performance of the Laplace transform 
MP2 ansatz, Sect. 2.1, for the medium sized molecule p-chloro-phosphabenzene 
CsH4C1P using a (8s4pld; 4slp; l ls6pld; lls6pld)/[4s2pld; 2slp; 5s4pld; 
5s4pld] basis set (abbreviated DZP) with a total of 148 cartesian CGTFs. 
The core orbitals were frozen. Here we use the same molecule to test the AO-MP2 
ansatz. 

Due to a wide spread of orbital energies, Xmin = 0.77, Xma x = 358.1 in Eq. (8), 
a comparatively large number of terms, z = 8, is needed in the functional approx- 
imation, Eqs. (7, 8), to attain micro-hartree accuracy in the MP2 energy 1-18]. The 
parameters w~, t, are given in Table 3 of [18]. 

Although our experimental AO-MP2 program does not explicitly exploit point 
group symmetry, the planarity of CsH4C1P means the CGTFs accidentally form 
a symmetry-adapted basis with respect to the molecular plane. Eqs. (35-38) thus 
screen off about 50% of the ERIs just on symmetry grounds. This will be taken into 
consideration in subsequent comparisons. 

In Table 1 we show how variation of the parameters -c (number of exponentials) 
and ~9 (neglect threshold, Eqs. (34-39)) affects the approximate MP2 energy, 
Eqs. (11, 19), and how it affects the number of half-transformed integrals written 
to direct access file according to Eq. (37). 

While in all calculations on CsH4C1P errors in the MP2 energy E are below 1% 
(at the same time 94% of the half-transformed integrals are screened off) the 
computation costs grow by a factor of ten as the over-all accuracy is increased to 
almost #Hartree accuracy (~ = 10-1 o). At the highest accuracy (# = 10-1 o, z = 8) 
the computation time was about 44 h on an IBM RISC/6000-320 workstation 
computer: this is about a factor of 50-100 more than what would be expected for 
an efficient conventional semi-direct MP2 program. 

It is important to note that the error which arises from integral screening, 
termed 'SE' in Table 1, changes sign as ~9 is varied. Its magnitude agrees with 
a statistical superposition of small errors due to neglect of individual ERIs. This 
can be concluded, e.g. from the difference in the numbers of half-transformed 
integrals for 0 = 10-9 and ~9 = 10- ~ o, 21.106, and from the difference in SE, 2.10-5 
(the total screening errors in each e,, ~ = 1 . .  z, probably add up systematically 
in SE). 
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Table 1. MP2 energies E calcualted by the AO-MP2 ansatz for p-ehloro-phospha-benzene C4HsCIP 
(DZP basis sets) for different integral screening parameters ,9, Eqs. (34-39). The exact result would be 

- .911294 Hartree. z is the number of exponentials used in the Laplace integration, Eqs. (7, 11). L1, 
Eq. (9), is an a priori measure for the expected relative error in E due to the discretization of the Laplace 
transform. The observed error [18] from the discretization of the Laplace transform is L E  (absolute 
error). SE  is the error originating from integral screening. Also given is the maximum number (in million 
and in %) of half-transformed integrals (9#1Z'2') written to direct access file according to Eq. (37), and its 
a priori estimate based on Eq. (40) (the maximum is taken from • = 1 . .  z) 

,9 z L1 E L E  SE  est.~ (~7#1Z'2') J# (9#[Z'2') 

10 -6 8 2.7E - 6 - .908822 + .000001 + .002471 29 (11%) 13 ( 5 % )  
10 -7 8 2.7E - 6 - .911316 + .0000131 - .000023 51 (21%) 21 ( 9 % )  
10 -s  8 2.7E - 6 - .911332 + .000001 - .000039 78 (31%) 32 (13%) 
10 -9 8 2.7E - 6 - .911271 + .000001 + .000022 104 (42%) 46 (19%) 
10 -1° 8 2.7E - 6 - .911292 + .000001 + .000~1 125 (51%) 61 (25%) 
10 . 9  7 1.5E - 5 -- .911264 + .000012 + .000018 117 (48%) 47 (19%) 
10 -8 6 4.5E - 5 - .911253 + .000040 + .000001 79 (32%) 33 (14%) 
10 -7 5 2.8E -- 4 -- .911262 + .000214 - .000182 54 (22%) 23 ( 9 % )  
10 -6 3 1.5E - 3 - .906521 + .001377 + .003396 34 (13%) 14 ( 6 % )  

Table 2. Number of ERIs included in an AO-MP2 calculation of p-chloro-phospha-benzene with 
,9 = 10-a0 and z = 8 according to Eqs. (34-39). The integral numbers have been termed ERI34-ERI39 
respectively and are given in % (their total numbers cannot be compared directly due to different 
canonical symmetry). The numbers ERI34 and ERI39 are somewhat larger than the rest since in these 
steps whole integral batches have to be considered at once. Also shown are the energy contributions 
e, arising from each exponential term ~ = 1 ..  z, Eqs. (7, 11, 16) 

e~ ERI34 ERI35 ERI36 ERI37 ERI38 ERI39 

1 - .026270 57% 19% 23% 20% 16% 43% 
2 - .101457 61% 21% 26% 23% 21% 47% 
3 - .246319 62% 22% 28% 25% 23% 49% 
4 - .277971 61% 22% 27% 25% 24% 49% 
5 - .180737 59% 20% 25% 23% 22% 47% 
6 - .065095 55% 18% 22% 20% 19% 43% 
7 - .012326 50% 14% 16% 15% 13% 35% 
8 - .001118 37% 8% 7% 6% 4% 21% 

F o r  a n y  r e q u i r e d  a c c u r a c y  in the  M P 2  c o r r e l a t i o n  e n e r g y  we a re  t h u s  ab le  to  
c h o o s e  o p t i m a l  va lues  of  

(1) z b y  m e a n s  o f  the  a p r i o r i  e r r o r  e s t i m a t e s  L1 (also s h o w n  in  T a b l e  1) a n d  L2,  
Eqs .  (9, 10) [18] ,  a n d  of  

(2) ,9 by  a s s u m i n g  a s ta t i s t i ca l  s u p e r p o s i t i o n  of  sma l l  s c r e e n i n g  e r rors ;  t he i r  n u m b e r  
is k n o w n  a p r i o r i  f r o m  Eq.  (40). 

In  T a b l e  2 we  c o m p a r e  the  p e r f o r m a n c e  of  o u r  s c r e e n i n g  p r o c e d u r e  fo r  all t ypes  
o f  (pa r t i a l ly  t r a n s f o r m e d )  ERIs .  All b o u n d s  sc reen  a b o u t  t he  s a m e  p e r c e n t a g e  o f  
E R I s ,  e x c e p t  w h e r e  i n t eg ra l s  h a v e  to  be  p r o c e s s e d  a n d  s c r e e n e d  in  b a t ch es .  N o t  all 
M P 2  e n e r g y  c o n t r i b u t i o n s  e~, ~ = 1 . . .  8 = z, c o m e  at  t he  s a m e  price:  ~ = 7 a n d  

= 8, w h i c h  c o r r e s p o n d  to  h i g h  e x p o n e n t i a l  coef f ic ien ts  o f  t 7 --  2.7 a n d  ta = 5.4, 
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Table 3. Size distributions oflbvu[, [D~ul, Q~u, X~u, Y~u, and Z~u, Eqs. (15, 16, 25, 26, 27, 33), in p-chloro- 
phospha-benzene (core electrons frozen). Given is the percentage of matrix elements in the intervals 
[10 -k, 10 -k+x] for k = 0 . . .  8, and the percentage of matrix elements smaller than 10 -8. Below the 
same numbers are given for porphyrin CzoH14N4 (core electrons frozen) 

k 0 1 2 3 4 5 6 7 8 smaller 

ID~l 0.0% 0.7% 7.7% 19.3% 18.8% 9.9% 2.4% 0.2% 0.0% 41.0% 
[Pv~[ 5.4% 12.5% 17.6% 15.6% 6.8% 1.2% 0.1% 0.0% 0.0% 41.0% 
Qv. 0.7% 21.2% 22.2% 14.9% 9.5% 5.5% 4.2% 4.2% 3.2% 14.3% 
xvu 0.0% 2.8% 29.6% 41.8% 21.5% 4.0% 0.2% 0.1% 0.0% 0.0% 
~ .  0.1% 17.3% 39.2% 33.8% 8.9% 0.7% 0.0% 0.0% 0.0% 0.0% 
z~. 0.0% 8.4% 38.2% 36.9% 15.6% 1.0% 0.0% 0.0% 0.0% 0.0% 

IDyll 0.0% 0.2% 3.4% 12.2% 16.9% 15.3% 9.2% 3.7% 0.8% 38.3% 
[D~[ 4.9% 9.4% 15.3% 16.1% 12.1% 3.5% 0.5% 0.0% 0.0% 38.2% 
Q~ 0.2% 9.3% 10.2% 8.6% 6.3% 5.9% 6.1% 5.5% 3.9% ~ .1% 
xvu 0.0% 1.1% 13.0% 31.0% 30.5% 18.4% 5.7% 0.2% 0.0% 0.0% 
~u 0.2% 9.9% 24.6% 32.1% 28.7% 4.5% 0.1% 0.0% 0.0% 0.0% 
z~u 0.0% 6.5% 25.0% 36.9% 23.6% 7.6% 0.3% 0.0% 0.0% 0.0% 

Table 4. MP2 energies E calculated by the AO-MP2 ansatz for PTH3 with an SVP basis set for different 
integral screening parameters & Eqs. (34-39), and for different numbers T of exponentials used in the 
Laplace integration, Eqs. (7, 11). The exact result would be E = - .808210 Hartree. L1, Eq. (9), is an 
a priori measure for the expected relative error in E due to the discretization of the Laplace transform. 
The observed error LE + SE results from the discretization of the Laplace transform and from integral 
screening. Also given is the maximum number (in million and in %) of half-transformed integrals 
(gMIx'2') written to direct access file according to Eq. (37), and its a priori estimate based on Eq. (40) (the 
m~ximum is taken from c~ = 1 . .  ~) 

,9 ~ L1 E LE + SE est. # (gplx'2') 4e (g#lz'2') 

10 -6  2 3.0E - 3 -- .809774 - .001564 63 (25%) 26 (10%) 
10 -7 3 1.9E -- 4 - .808815 - .000605 92 (37%) 44 (18%) 
10 -8 4 1.3E -- 5 - .808223 - .000013 118 (48%) 68 (28%) 
10 -9 5 8.6E - 7 - .808199 + .000011 144 (58%) 97 (40%) 
10 -20 6 5.9E - 8 - .808208 + .000002 164 (67%) 128 (52%) 

Eq.  (7), a re  c o m p a r a t i v e l y  i nexpens ive  as can  best  be  r a t i o n a l i z e d  on  the  g r o u n d s  o f  
Eqs.  (15, 30). 

T a b l e  3 p r o v i d e s  the  size d i s t r i bu t i on  of  all  t w o - i n d e x  quan t i t i e s  i n v o l v e d  in 
t r a n s f o r m a t i o n s  and  sc reen ing  for  p - c h l o r o - p h o s p h a - b e n z e n e .  R e m e m b e r  tha t  the  
c o r r e l a t i o n  ene rgy  c o n t r i b u t i o n  o f  each  E R I  is b o u n d  by  a p r o d u c t  of  four m a t r i x  
e l emen t s  f r o m  Q, x ,  Y, or  z .  I t  is the  sp read  of  the  d i s t r i bu t i ons  wh ich  m a k e s  
in t eg ra l  s c reen ing  efficient. 

F o r  c o m p a r i s o n  we a lso  s tud ied  E R I  sc reen ing  a n d  resu l t ing  accurac ies  for  the  
m o r e  g lobu la r ,  c o m p a c t  PTH3 molecu le .  C o r e  o rb i t a l s  h a v e  n o t  been  cor re la ted .  
W i t h  a (lOs7pld; 4s lp) /[4s3pld;  2 s l p ]  basis  set (split  va l ence  plus  p o l a r i z a t i o n  o r  
SVP),  wh ich  yields a to t a l  of  148 ca r t e s i an  C G T F s ,  we obse rve  s imi la r  accurac ies  as 
for  the  p l a n a r  CsH4C1P ,  c o m p a r e  Tab le s  1 a n d  4. F o r  the  S V P  basis  set in P7H3 ,  
howeve r ,  the  sp read  o f  o rb i t a l  energ ies  is n a r r o w e r  t h a n  for  a D Z P  basis  set in 
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CsH4CIP, and a smaller number -c of terms in the exponential approximation, Eq. 
(7), suffices to attain similar accuracies in the Laplace transform MP2 energies as 
can be seen from a comparison of the Laplace integration error estimates L1 in 
Tables 1 and 4. At the same total accuracy the number of half-transformed integrals 
to be processed in P7H3 is twice that in CsH4C1P: this is largely a consequence of 
planarity in the latter system. 

To ascertain the effects of growing molecular size we have chosen the planar 
porphyrin C2oH14N4 (SCF equilibrium geometry) to be our last test molecule. The 
basis set employed is (7s4pld; 4slp; 7s4pld)/[3s2pld; 2slp; 3s2pld] (SVP), which 
totals 430 CGTFs. Porphyrin has an extended n-system and may be among the 
more difficult large molecules to study as there is electron delocalization and 
exchange interactions may be long ranged (cf. Sect. 4.2). This would also pose 
problems to localization based correlation approaches. 

In Table 3 the distributions of matrix element magnitudes of Q, x ,  Y, and Z, 
Eqs. (25, 30-33), can be compared for the systems p-chloro-phospha-benzene and 
porphyrin. The largest difference appears in Q as the logarithms of its matrix 
element magnitudes approach a uniform distribution in porphyrin. This is already 
close to what can be expected for a large planar molecule in the asymptotic limit 
according to Sect. 4.1. One would therefore expect at worst ~ N 3 of the partially 
transformed integrals to pass the screening formulas, Eqs. (36-38). The other size 
distributions (for X, Y, and Z) gain up to a decade in width as compared to 
p-chloro-phospha-benzene. This may help to reduce the number of partially 
transformed integrals, but is insufficient to reach the ,,~ N2 asymptotic integral 
count at this molecular size. 

The changes in the size distributions of X~, and of Yr, are in phase with those of 
I Dv,[ and I_Dv, I, respectively, Table 3. However, besides symmetry zeros in D and _D, 
sparsity in these matrices is not sufficient to reward running innermost transforma- 
tion loops only over significant matrix elements of/) and _D (as may be achieved by 
pre-sorting and indirect addressing). 

To test the efficiency of integral screening for porphyrin we performed an 
all-electron AO-MP2 calculation with parameters z = 1 and 8 = 10 -9. The num- 
ber of CGTF ERIs to be evaluated for the first quarter-transformation step was 
1.7.109 (19%) due to screening by Eq. (34) (adapted to integral batches). After 
evaluation only 5% of the CGTF ERIs were transformed as a consequence of 
Eq. (35) (applied to individual ERIs). Screening of quarter-, half-, and three-quarter- 
transformed integrals by Eqs. (36-38) admitted only 7%, 5%, and 4°,/0 of the ERIs 
into the subsequent transformation steps, respectively. 

In porphyrin integral screening in the transformation steps thus improves 
performance by a factor of 20. However, only a factor of 10 is due to the size of the 
system while planarity accounts for a factor of 2. The total number of half- 
transformed integrals written to disc was 9"108 . 

A comparison to p-chloro-phospha-benzene shows that while we tripled the 
number of basis functions the performance gain due to integral screening increased 
by a factor of 4. 

We have thus left the N 5 dependence of the operation count on the size of the 
system, and have entered the N 4 regime. Unfortunately this is not sufficient to win 
over an optimal conventional MP2 algorithm for which the number of half- 
transformed integrals (ivlj#) is n2N2/4 = 3.108 (we included a factor of 1/2 for 
planarity). Considering that we have chosen z = 1 while z = 5 would have been 
adequate (this translates into a factor of ~ 3.5 in computation time, see Table 2), 
there is still a factor of about ten in performance we need to gain. 
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We conclude: We have shown that rigorous MP2 correlation energies can 
be evaluated by the AO-MP2 ansatz with an operation count ~ N 4 in systems 
like porphyrin C2oH14N~, 430 CGTFs. However, the AO-MP2 ansatz is a 
factor of about 100 more costly in small molecules than the conventional MP2 
approach, and in porphyrin this difference is reduced by a factor of 10. Thus 
our current implementation of the AO-MP2 ansatz is not competitive if #Hartree 
accuracy is required. At this accuracy we would expect the break-even point 
at about 200 atoms (provided the size distributions of X, Y, and Z gain 
further width). In the next section we look at possible improvements of the 
AO-MP2 ansatz which may help to attain the break-even point at a smaller 
molecular size. 

6 Further improvements 

The AO-MP2 ansatz could be more efficient, if the matrices D and _D, Eq. (15), were 
sparse even in medium sized molecules. Their appearance definitely hinges on the 
basis set we use: if we switch from the C G T F  representation to the canonical SCF 
MO basis, we obtain diagonal matrices D and D, and we are back at the original 
Laplace transform MP2 ansatz, Eqs. (11-13). However, with this drastic transition 
we loose most of our integral screening potential, and a number of other advant- 
ages of the AO-MP2 ansatz as well, cf. Sect. 3.3. 

Fortunately there is a smooth transition between those two extreme ap- 
proaches which probably allows to balance their respective advantages and 
disadvantages. A well-known example from within this transition region are 
symmetry-adapted basis functions 1-29], but this will not be our concern here. 

Let us partition our C G T F  basis into sub-sets and corresponding sub-spaces 
M (the identifier M will be used for both) as in Sects. 3.2 and 3.3. Such a sub-set 
M could, for instance, comprise all CGTFs which are centered at the same atom, or 
all basis functions which belong to a small group of atoms like a methyl group or 
a carbonyl group. This will be our choice. 

Next we introduce a new basis B(M) in sub-space M which for our computa- 
tional convenience is orthonormal in M. Basis functions from different subspaces 
M and M' would usually not be orthogonal. The AO-MP2 ansatz may now be 
formulated in terms of the new molecular basis set B = u B(M), which thus 
consists of modified atomic orbitals (AO) or group orbitals (GO). Subsequently we 
will use the acronym AO for both. 

We may also use a mixture of basis sets, e.g. the original CG TF  basis for those 
functions which will subsequently be transformed by _D, and the modified AO basis 
set B otherwise, cf. Eq. (17). 

Which particular choice of B offers the highest rewards in such a mixed scheme? 
If our primary CGTF basis is large in the sense that it is designed to retrieve a high 
proportion of the dynamical correlation energy (this is a case against the AO-MP2 
ansatz), we can expect that D, which corresponds to the occupied-occupied block 
of the exponential Fock matrix, can efficiently be represented by a sub-set of B. 
This will be our aim. 

We express the occupied orbitals in our as yet unoptimized basis fl, 7, 6 E B: 

l i)  = ~ I f l ) C ~  ), (63) 
fleB 
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and obtain for matrix D(~), Eq. (15), the new representation: 

Jp~ = Iw~l ~/" 5". c(p~ ) exp((e~ - 8 F ) t ~ ) C ~  ) . 
i 

(64) 

Basis B will be optimal if A has as many near-zero rows and columns as possible (or 
has many rows and columns with near-zeros everywhere with the possible excep- 
tion of the (M, M) diagonal blocks). In other words we choose each sub-basis 
B(M) so as to diagonalize the positive semi-definite matrix: 

d(M)a~ = ~ Ap~ Ar~, (65) 
?eB' 

where /?, 6 s B(M), and B ' =  B (or B ' =  BkB(M)). The near-zero eigenvalues 
of d(M) would relate, for example, to atomic orbitals (or group orbitals) with 
a large number of nodes which do not represent the occupied space, but are only 
involved in the description of dynamical correlation effects. In the limiting case, 
where the CGTF basis is partitioned into only one sub-space M, the eigenvalues of 
d(M) would be zero (virtual orbitals) or equal to exp(2(~i- ~F)t~) (occupied 
orbitals). 

We have not yet tested this modified AO approach, but we may refer the reader 
to similar considerations in a very different context: modified atomic orbitals 
(MAO) have previously been used in population analyses, and it has been shown 
that a small number of carefully optimized MAOs at each atom (corresponding to 
a single zeta description) can to a good approximation serve as a basis of a SCF 
one-electron density originally expressed in a much larger basis set (the 'unassigned 
charge' is usually well below 1%) [30]. 

The calculation of mixed CGTF/MAO ERIs is certainly not a problem as 
similar ERIs have efficiently been implemented in context with atomic natural 
orbital (ANO) generalized contraction basis sets [31, 32]. 

7 Conclusions 

With the AO-MP2 ansatz we have presented a novel formulation of MP2 theory. 
Starting point of our approach was the Laplace transform MP2 ansatz [17, 18]. 
Subsequently we moved into an atomic orbital (AO) basis representation and 
eliminated the need to calculate electron repulsion integrals for molecular orbitals. 
For the first time we calculated MP2 correlation energies of medium-sized molecu- 
lar in an AO basis. 

Our aim has been to remove all bottlenecks which hinder an application of 
MP2 theory to large molecular systems: 

(1) We demonstrated in theory, Sect. 4, and in applications, Sect. 5, that the 
operation count of the AO-MP2 ansatz grows at most with the fourth power of the 
size of the system, and not with the fifth power as in conventional MP2 theory. This 
has been made possible by strict bounds, Sect. 2.3, which eliminate numerically 
insignificant four-index quantities from all intermediate operations. This elimina- 
tion rate approached 95% in an application to the porphyrin molecule C2oH14N4. 
Some of these findings also have implications with regard to standard MP2 
programs, cf. Sect. 3.2. 
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(2) In systems with localizable electronic structure the asymptotic operation count 
may be as low as ,-~ N 2 (Sect. 4.2). An application to (non-metallic) crystals seems 
to be a natural extension of the AO-MP2 ansatz. 

(3) In Sect. 3.3 we devised an AO-MP2 algorithm which allows to perform molecu- 
lar MP2 calculations in-core with only ,-~ N 2 memory requirements. 

(4) The same algorithm is ideally suited to be implemented on massively parallel 
computers and will run with high efficiency as virtually no input/output or 
inter-processor communication is necessary, provided that each individual proces- 
sor can store several N 2 matrices (we recall that N is the number of basis functions). 

In the appendix we outline the formulation of MP2 gradients within the 
framework of the AO-MP2 ansatz, and there is good reason to believe that points 
(1)-(4) above also apply to AO-MP2 derivatives. 

However, we failed one objective: our experimental AO-MP2 program does not 
outperform a conventional (semi-direct) MP2 program in molecular systems with 
100 correlated electron pairs or less. The reason is that in small molecules the 
AO-MP2 ansatz starts off with about a factor of 100 more computational opera- 
tions than MO-based MP2 algorithms. If /~Hartree accuracy is required we 
estimate that computation times superior to MO-based algorithms will be 
achieved with the present AO-MP2 algorithm for molecular systems of 200 atoms. 
For moderate quality basis sets (like 'split valence plus polarization') this is 
a conservative estimate, and there are probably smaller systems, e.g. molecular 
clusters interacting through hydrogen bonds, for which the AO-MP2 ansatz is 
already competitive. High quality basis sets, on the other hand, will decrease the 
competitivity of the straight AO-MP2 ansatz. 

With the introduction of modified atomic orbitals or modified group orbitals in 
Sect. 6 we hope to eliminate this drawback, and aim to outperform traditional 
MO-based MP2 algorithms already in applications to molecular systems only 
slightly larger than porphyrin. Other conceivable means to improve the operation 
count are auxiliary basis sets for charge distributions [19, 33] or numerical integra- 
tion techniques [34]. 

Ten years time have passed since Alml6f et al. suggested the 'direct' SCF 
method in 1982 [7], designed for an application to large molecules. At first this 
approach was not competitive, but this changed as the meaning of 'large' changed. 
As computational hardware seems to become ever more powerful it does not take 
much prophecy to foretell that 'large' will again change meaning in electronic 
structure theory in the next ten years. The AO-MP2 ansatz is ideally suited for the 
computer generations to come, and might become a standard approach for the 
evaluation of correlation energies and correlated properties within the framework 
of Moller-Plesset (MP2) perturbation theory in systems larger than porphyrin. 

Appendix: AO-MP2 derivatives 

The first expressions for conventional MP2 gradients have been given in [35]. Here 
we derive expressions for the derivatives E ¢ of the MP2 energy E with respect to 
a set ~ of (real) perturbations ~ in the AO-MP2 formalism. 

We adopt the convention that a superscript ¢ indicates a total derivative with 
respect to the perturbation ¢ while a superscript (¢) means a partial derivative 
which does not apply to SCF molecular orbital coefficients and orbital energies. To 
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keep our notation short we will also imply implicit summation over indices which 
occur in more than one factor (not counting orbital energies ep) of a product 
expression. These conventions are illustrated by the familiar coupled-perturbed 
Hartree-Fock (CPHF) equations [36]: 

F ( O  S ( ~ g q . _ b ( g p  e q ) U i q q _ a p q a i U ~ a i  ! , t  ,if(g) ____ g~p Opq, (A1) pq - -  __ __ 2 Zapqji ~ fi  

which together with the orthogonality constraint: 

determine the first-order response of the SCF MO coefficients with respect to 
a perturbation 4: 

C~p = Cvq U¢qp. (A3) 

Here and in the following equations p, q, r, s label all SCF MOs (occupied and 
virtual), and: 

Ap~,~ = 4(pqlrs) - (pslrq) - (prlsq). (A4) 

With Eq. (A1) we have chosen a formulation of the CPHF equations which retains 
the canonicity of the perturbed MOs. 

Our aim is to express the MP2 correlation energy gradient as: 

E ~ = E (¢) + ~pq F ~  - Zpq S (p~ + (2.i U~i 

= -- f o  dt(e(¢)(t) + qgpq(t)_F(¢)pq - apq(t)S~p~ + co, i(t)Ugai) (A5) 

with the unknowns E (~), 4, 2;, and f2 all evaluated within the AO-MP2 ansatz. As in 
conventional MP2 gradient schemes the solutions U~ of the CPHF equations are 
not needed in order to evaluate E ¢ from Eq. (A5) since they can be eliminated by 
the Handy-Schaefer trick [37] after the 'Lagrangian' O has been determined. This 
elimination step amounts to the solution of only one CPHF type equation (also 
called the Z-vector equation) which for large molecules is best carried out in the 
CGTF basis in the spirit of direct SCF techniques [38]. 

We start our derivation of Eq. (AS) by taking the derivative of Eq. (4): 

with 

and 

E¢ = - f o  dt e¢(t). (A6) 

We recall that within the AO-MP2 ansatz: 

e(t) = (v'#'lZ'2') b~,~ _Du, u Dx, x _D~,~ [2(v#lz2) - (v21z#)], (A7) 

D_~u = D_vu(t) = Cva exp(-  e, t )  C , , ,  

(A8) 

in close analogy to Eqs. (15, 16), but with two differences: (a) We set •F = 0 for 
simplicity. (b) We still use the Laplace transform scheme without discretization by 
means of Eq. (7). 

(A9) 



170 M. H~ser 

The total derivative of e(t), Eq. (A7), with respect to ~ is: 

e¢(t) = e{¢)(t) + 2Rzz, _D]z, + 2_Rzx, bcz,,, (A10) 

where the first term: 

e ~¢) (t) = 2(v'#'[ ~'2') b~,, _Du," bz, z _Da,a [2(v#lz2) ~ - (v2lx#) ¢] 

= 2(9~1,~_2)[2(v/zlz2) ¢ - (vXlz/~) ¢] ( A l l )  

already yields E re), Eq. (A5), after subsequent t-integration. Obviously E re) can be 
obtained by the same algorithms as E, Sects. 3.1 and 3.3, at a similar computational 
cost (the only difference is between (v/tlX2) and (v#l Z2)¢). 

The other terms in Eq. (A10) are: 

~z~, = (v~l ~2')  i-2 (v~ I z,~) - (v;tl z~)- I ,  (A12)  

_Rzz, = (v~12'z) [2(v/~12z) - (vz[2/~)], (A13) 

beau = (C,a C~i + C,i Cua) exp(eit) U~i 

+ (C,j Cui + C~ Cuj ) exp(eit) U~i 

+ C~, C,i exp(el t) e~ t, (A14) 

and 

D ~  = (C~ Cu, + C~i C , ~ ) e x p ( -  e~t) U~ 

+ (C~a C,b + Cvb Cua) e x p ( -  eat) UCba 

- Cva Cua e x p ( -  eat)eeat. (A15) 

Matrix R has already been constructed in context with the AO-MP2 in-core 
multiple pass algorithm, Eq. (42). Matrix _R can be calculated similarly and 
simultaneously, provided the half-transformed integrals (q~lZ'2') are transformed 
both to (~p_l~2') and to (~/ll2'X) as well. 

If the C P H F  equations for ~ were now solved, Eqs. (A1,A2), we could deter- 
mine b e and _D e, Eqs. (A14, A15). Since the other quantities on the right side of 
Eq. (A10) have been shown to be available by the AO-MP2 ansatz we would thus 
obtain ee(t). However, we wanted to avoid the C P H F  equations for the set ~ of 
perturbations, and thus proceed towards Eq. (A5). On our way it will become 
necessary to distinguish active and frozen orbitals, but this is a mere technicality 
adding some extra terms to the equations. For clarity we assume that all SCF MOs 
will be included in the correlation treatment. 

We re-write Eq. (A10) with the (symmetrized) matr ices/]  and _R transformed 
into the M O  basis, and we use Eq. (A2) and some index symmetries to obtain: 

e¢(t) = e (¢) (t) + 4(_Ral exp(ei t) -- Rai e x p ( -  ~a t)) U~ai - -  4/]a, e x p ( -  ea t)S~, ) 

+ 2_Rji((exp(eit)'-- exp (~,jt)) U~i + 5ji exp(eit)e[t) 

+ 2/~ba((exp(-- eat) -- exp(-- ebt)) Ub¢~ -- 6ba exp(-- e~t)eCat) 

-- 2_Rji exp(ejt)S~, ¢.) - 2/~ba e x p ( -  ebt)S~,~. (A16) 
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Preparing for the removal of U~ (and U~.) from Eq. (A16) we introduce a function: 

g(ei, ej, t) = exp(eit) - exp(ejt) 
8i - -  8j 

. . . .  sinh((el - at) t/2) 
= t exp((e, + e~)t/2) - ( - ~ i ~ ) t ~ )  (A17) 

with g(~'i, ei, t) = t exp(e l t )  

which is continuous for near-degenerate orbitals, e~ ~ e j, and avoids numerical 
problems associated with small differences between large numbers. Aided by 
Eqs. (A1,A17) we now remove U~, Ub¢,, e~, and ea ¢ from Eq. (A16), and obtain Eq. 
(A5) with: 

¢Pji(t) : 

(Pba( t ) = 

qJai( t ) = 

aji( t)  = 

and 

ffba( t ) = 

~ . ~ ( t )  = 

2_Rji g(el, e j, t), (A18) 

- 2/~ba O(-- 8a, -- 8b, t), (A19) 

q~i.(t) = 0, (A20) 

2_Rji(exp(ejt)  + ejg(ei,  ej, t))  + 2A~.k _Rig O(ek, et, t) 

-- 2Ajibc Rb~ g ( - -  eb, -- e~, t), (A21) 

2/~b.(exp(-- ebt) -- ebg(--  e. ,  -- eb, t)), (A22) 

ai . ( t )  = 2R.~ exp(-- eat), (A23) 

o).i(t ) = 4(_Ral exp (e i t  ) - -  R a i  exp(-- e. t ) ) + 2Aaijk _R jk g(ek, ej, t) 

-- 2A.ibc Rbc g(-- eb, -- ec, t). (A24) 

All terms containing the A-matrix, Eq. (A4), can of course be evaluated in the 
CGTF basis at the price of one (direct) SCF iteration. 

We summarize: Within the framework of the continuous Laplace transform 
AO-MP2 approach we have derived a gradient formula, Eq. (A5). The quantities 
eg)(t), ~0pq(t), apq(t), and c%q(t) have been shown to be available by some modifica- 
tions of the AO-MP2 algorithms, Sects. 3.1 and 3.3, and may increase computa- 
tional expenses by about 50% as compared to the calculation of e(t)  alone (the 
multiple pass algorithm in Sect. 3.3 may become significantly more costly if 
derivative integrals are evaluated repeatedly to obtain eg)( t)  in-core with only N 2 
memory requirements). 

The only non-trivial step left is the t-integration of the matrices defined in 
Eqs. (A18-A24). Other than with the discretized integration of e(t),  which only 
necessitates a good approximation of 1Ix in some finite positive interval by a basis 
of z exponentials e x p ( -  xt~), the presence of the function g, Eq. (A17), in e¢(t) will 
also require all difference quotients ( l / x1  - 1 / x 2 ) / ( x l  - x2), including differential 
quotients, to be well approximated by respective difference quotients of the ex- 
ponential expansion, Eq. (7). While this requirement can probably be met by 
a sufficiently large number z of exponential terms in the least-squares fit, Eq. (8), it 
may be more efficient to modify Eq. (8) so that the deviation between the first 
derivative of 1Ix and the derivative of its exponential approximation is minimized, 
too. While this has yet to be tested one can probably expect a modest increase in z if 
one aims at a similar accuracy in E ¢ as in E. 



172 M. H~iser 

W i t h  r e g a r d  to  second derivatives we p o i n t  o u t  t ha t  in the  A O - M P 2  a n s a t z  one  
can  c o m p l e t e l y  a v o i d  any  t r a n s f o r m a t i o n  o f  p e r t u r b e d  basis  func t ions  v ¢ whi le  t hey  
f o r m  pa r t  o f  f ou r - i ndex  quant i t i es .  Th is  r e m o v e s  a m a j o r  obs t ac l e  to  the  c a l c u l a t i o n  
o f  v i b r a t i o n a l  m o d e s  at  the  M P 2  level  of  t h e o r y  [39].  
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